(2022年) 令和 4 年 10 月 14 日更新 (2012年) 平成 24 年 2 月 11 日初版 株式会社 材料設計技術研究所

1)酸化カルシウムと二酸化炭素

酸化カルシウム CaO の 1 モルと二酸化炭素の 1 モルを入力原料とし、系の圧力を 1 気圧とし、900 $^{\circ}$ と 500 $^{\circ}$ の状態を計算してみよう。

CaTCalc SE が標準装備している熱力学データファイルを利用すれば操作は簡単である。

- [1] 周期律表から元素 Ca と C と O を選択
- [2] IdealGas, PureLiq, PureSol 熱力学データファイル 3つを選択、Load
- [3] Calculation ボタン
- [4] 計算指示画面にて、Add Feed ボタン、Species 欄に CaO を入力する
- [5] 再度 Add Feed ボタン、Phase 欄から Gas を選択し、Species 欄から CO2 を選択 Value 欄にそれぞれ 1 を入力する

温度欄に900を入力する

Feed/Activity Conc	litions		Default U	Jnit: mol (formula)
Phase	Species	Unit	Value	
	CaO	mol	1	
Gas	CO2	mol	1	

操作はこれだけです。

計算結果: ガス種は CO_2 だけでなく、CO や O_2 を含む 15 個を計算対象にしている。 CaO (s) と Gas が平衡(安定)になる。 Gas 相中のガス種 CO_2 の比率は 0.9999918 となる。

次に 500^{\circ}Cの計算を実行すると、CaCO3(s) が 1 モル平衡(安定)になる。 これより

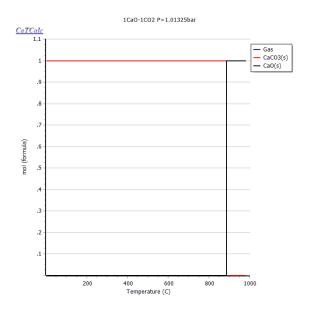
 $CaCO_3$ (s) <==> CaO (s) $+ CO_2$ (g) の反応が予想される。

コメント: 二酸化炭素は高温度において次式にしたがって分解する。

$$2CO_2 \Rightarrow 2CO + O_2$$

1atm, 1000K においては 2.0×10^{-5} %, 1400K においては 1.8×10^{-2} % の CO_2 が分解する。

次に、反応温度を確認してみよう。


[6] 温度欄に 1℃から 1000℃まで 20℃きざみと入力する

Temperature (C)
1 1000 20

Pressure (bar)
1.01325

計算結果: 図が表示される。

List タグをクリックすると数値表が表示される。 これより分解温度 886.8℃を得る。


Summary	Plot List							
		P (bar)	1.01325	1.01325	1.01325	1.01325	1.01325	
Phase	DataBase	T (C)	881	886.8255	886.8256	901	921	Н
Gas	IdealGas	mol (formula)	0	0	1.000002	1.000003	1.000004	
		Activity	0.9168716	0.9999987	1	1	1	
	Element	Ca	1.523219E-22	1.973762E-22	1.97378E-22	4.524589E-22	1.410269E-21	4.
	Element	С	0.3333333	0.3333333	0.3333333	0.3333333	0.3333333	П
	Element	0	0.6666667	0.6666667	0.6666667	0.6666667	0.6666667	
		С	3.383942E-37	5.185788E-37	5.18586E-37	1.653262E-36	8.100589E-36	3.7
		C2	1.112612E-52	2.075518E-52	2.075558E-52	9.881655E-52	8.388989E-51	6.6
		C20	8.447661E-35	1.283624E-34	1.283641E-34	3.491752E-34	1.376451E-33	5.1
		C3	7.912798E-64	1.695303E-63	1.695342E-63	1.048853E-62	1.27493E-61	1.4
		C302	7.818243E-36	1.205734E-35	1.205749E-35	2.959338E-35	1.013372E-34	3.3
		C4	3.52818E-84	9.616104E-84	9.616392E-84	9.873741E-83	2.403968E-81	5.2
		C5	2.967863E-96	9.387191E-96	9.38751E-96	1.284161E-94	4.633768E-93	1.4
		Ca	1.579991E-23	2.0385E-23	2.038519E-23	4.944299E-23	1.664775E-22	5.
		Ca2	7.60464E-49	1.36118E-48	1.361207E-48	7.738439E-48	8.366751E-47	8.3
		CaO	4.411649E-22	5.717423E-22	5.717476E-22	1.30793E-21	4.064312E-21	1.2
		СО	4.107654E-06	4.4031E-06	4.403111E-06	5.571071E-06	7.690433E-06	1.0
		CO2	0.9999938	0.9999934	0.9999934	0.9999916	0.9999885	
		0	1.359637E-11	1.53889E-11	1.538897E-11	2.376586E-11	4.311918E-11	7.€
		02	2.05382E-06	2.201542E-06	2.201548E-06	2.785523E-06	3.845195E-06	5.2
		03	2.810557E-19	3.511713E-19	3.511737E-19	5.982265E-19	1.241508E-18	2.5
CaCO3(s)	PureSol	mol (formula)	1	1	0	0	0	
	CaCO3	Activity	1	1	0.9999987	0.8127774	0.6121512	
CaO(s)	PureSol	mol (formula)	0	0	1	1	1	
	CaO	Activity	1	1	1	1	1	
							Ш	

2) 炭酸カルシウムの温度による分解

固体の炭酸カルシウム CaCO3 の 1 モルを入力原料にして計算してみよう。 系の圧力を 1 気圧に保持し、温度を連続変化させてみよう。

- [1] 周期律表から元素 Ca と C と O を選択
- [2] IdealGas, PureLig, PureSol 熱力学データファイル 3つを選択、Load
- [3] Calculation ボタン
- [4] 計算指示画面にて、Add Feed ボタン、Species 欄に CaCO3 を入力する Value 欄に 1 を入力する
- [5] 温度欄に 1℃から 1000℃まで 20℃きざみと入力する

Feed/Activity Conditions			Default Unit: mol (formula)		
Phase	Species	Unit	Value		
	CaCO3	mol	1		

計算結果: ガス種は CO_2 だけでなく、CO や O_2 を含む 15 個を計算対象にしている。 温度刻み幅とは別に相転移温度などは自動的に計算してくれる。 図が表示される。

List タグをクリックすると数値表が表示される。 これより分解温度 886.8℃を得る。 これは前節と同じ結果になる。

886.8°Cにて、

CaCO₃ は、CaO 固体と CO₂ を主とするガス相になる。

 $CaCO_3$ (s) \leq CaO (s) + CO_2 (g)

3) 系の圧力を 0.001 bar にした場合はどうなるか?

計算指示:圧力欄の値を 0.001 にする。

Temperature (C)
1 1000 20

Pressure (bar)—
0.001

計算結果:

558.9 ℃にて、

CaCO₃ は、CaO 固体と CO₂ を主とするガス相になる。分解温度が変わった。

4) 1気圧の場合のエネルギー値を確認してみよう。

金属データブック 改訂 3 版、丸善(1993)には、25^{\circ}C、1 気圧における 標準生成エンタルピーとエントロピーはそれぞれ

CaCO3 (s) -1207 kJ/mol 88.7 J/Kmol

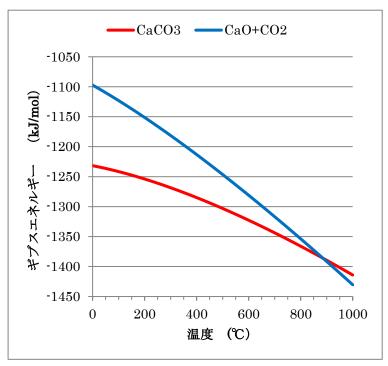
CaO (s) -634.3 40

CO₂ (g) -393.5 214

とある。

CaTCalc の持つ熱力学データファイルでは25℃、1気圧における

標準生成エンタルピーとエントロピーとギブスエネルギーは


CaCO3 (s) -1206.6 kJ/mol 91.7 J/Kmol -1233.9 kJ/mol

CaO (s) -634.9 38.1 -646.3 CO2 (g) -393.5 213.8 -457.2

である。

ギブスエネルギーは温度の関数として定義されている。

温度を変えてギブスエネルギー値を比較すると、1 気圧の場合は下図のように 886.8℃にて 交差することがわかる。

5) ガス分圧

700℃における値は

 $\triangle G = G(CaO) + G(CO2) - G(CaCO3) + RT \ln P$

(-694.7 - 622.2) - (-1343.8)

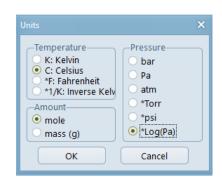
26.9 kJ/mol

 $RT \ln P(CO2) = -26900$

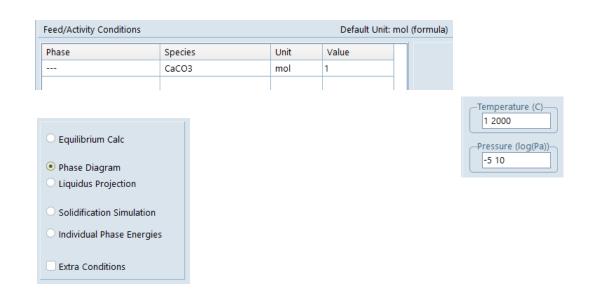
これより平衡する二酸化炭素分圧は 0.036 と求まる。

6) 炭酸カルシウムと圧力の関係

炭酸カルシウムの反応 $CaCO_3 = CaO + CO_2$

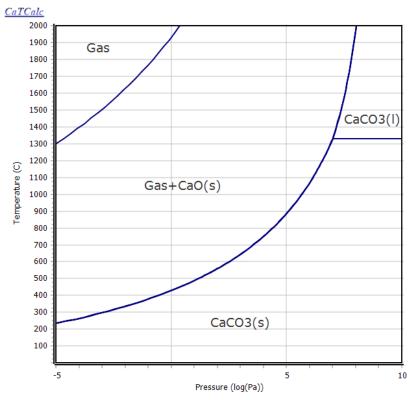

を知らなくても良い。平衡計算では入力原料(Feed と呼ぶ)だけを指定すればよい。 反応生成物として何がどれだけ生じるかは計算により求まる。

固体の炭酸カルシウム $CaCO_3$ の 1 モルに対して、系の圧力を変化させ、温度との関係図を作成してみよう。


- [1] 周期律表から元素 Ca と C と O を選択
- [2] IdealGas, PureLig, PureSol 熱力学データファイル 3つを選択、Load
- [3] Calculation ボタン

計算指示画面のメニュー Setting から Units を選択 圧力を軸とする場合は Log(Pa) を選択する

1気圧は 101325 Pa



- [4] 計算指示画面にて、Add Feed ボタン、Species 欄に CaCO3 を入力する Value 欄に 1 を入力する
- [5] 温度欄に 1℃から 2000℃までと入力する
- [6] 圧力欄に -5 から 10 までと入力する Pa 単位の log 値
- [7] 画面左下にある計算タイプから Phase Diagram をチェックする

1CaCO3

計算結果:

炭酸カルシウムの分解 圧力と温度の関係図

ある温度に注目すれば、解離圧(dissociation pressure)より圧力が低いと酸化カルシウム CaO に、圧力が高いと炭酸カルシウム CaCO₃ になる。

ある気圧に注目すれば、1 気圧は 101325 Pa であるから、上図の横軸の 5 の付近である。 2) 節で求めた 886 \mathbb{C} になる。

7)

二酸化炭素の分圧に注目すれば、空気中の CO_2 は 0.03% であるから 3×10^{-4} bar 。 これは 30Pa であるから上図の横軸の 1 付近である。 約 500 $^{\circ}$ $^$

 $(N_2 = 78.08\%, O_2 = 20.95\%, Ar = 0.93\%, CO_2 = 0.03\%)$

参考文献

矢澤彬の熱力学問題集、内田老鶴圃、(2011). 改訂 化学熱力学の基礎演習問題、アグネ技術センター、(2002).

以上(全6枚)